Comparison between two rat sympathetic pathways activated in cold defense.

نویسندگان

  • Youichirou Ootsuka
  • Robin M McAllen
چکیده

In cold defense and fever, activity increases in sympathetic nerves supplying both tail vessels and interscapular brown adipose tissue (iBAT). These mediate cutaneous vasoconstrictor and thermogenic responses, respectively, and both depend upon neurons in the rostral medullary raphé. To examine the commonality of brain circuits driving these two outflows, sympathetic nerve activity (SNA) was recorded simultaneously from sympathetic fibers in the ventral tail artery (tail SNA) and the nerve to iBAT (iBAT SNA) in urethane-anesthetized rats. From a warm baseline, cold-defense responses were evoked by intermittently circulating cold water through a water jacket around the animal's shaved trunk. Repeated episodes of trunk skin cooling decreased core (rectal) temperature. The threshold skin temperature to activate iBAT SNA was 37.3 +/- 0.5 degrees C (n = 7), significantly lower than that to activate tail SNA (40.1 +/- 0.4 degrees C; P < 0.01, n = 7). A fall in core temperature always strongly activated tail SNA (threshold 38.3 +/- 0.2 degrees C, n = 7), but its effect on iBAT SNA was absent (2 of 7 rats) or weak (threshold 36.9 +/- 0.1 degrees C, n = 5). The relative sensitivity to core vs. skin cooling (K-ratio) was significantly greater for tail SNA than for iBAT SNA. Spectral analysis of paired recordings showed significant coherence between tail SNA and iBAT SNA only at 1.0 +/- 0.1 Hz. The coherence was due entirely to the modulation of both signals by the ventilatory cycle because it disappeared when the coherence spectrum was partialized with respect to airway pressure. These findings indicate that independent central pathways drive cutaneous vasoconstrictor and thermogenic sympathetic pathways during cold defense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of cutaneous blood flow by central nervous system.

Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless s...

متن کامل

Mitigation of chilling and freezing stresses through colonization with arbuscular ‎mycorrhizal fungi in spring barley ‎

Cold stress is an ‎important limiting factor for cereal production. Barley is a host species for arbuscular mycorrhizal fungi (AMF) with a high genetic diversity in response to cold stress. In order to explore the mechanisms for the ameliorative effect of AMF under cold stress, an experiment was undertaken using completely randomized block design with three factors including temperature treatme...

متن کامل

Evaluation of the Neuroendocrine System and the cytokine pattern in warm and cold nature persons.

Introduction: Traditional Iranian medicine (TIM) is accompanied by little side effects in experience. The mechanisms involved in TIM are not much clear. The purpose of this study is assessment of differences of warm and cold nature persons in neuroendocrine system and cytokine pattern (Th1/Th2) of immune responses. Methods: Thirty seven 20 to 40 years old male volunteers were divided into 2 ...

متن کامل

Differential control of sympathetic outflow.

With advances in experimental techniques, the early views of the sympathetic nervous system as a monolithic effector activated globally in situations requiring a rapid and aggressive response to life-threatening danger have been eclipsed by an organizational model featuring an extensive array of functionally specific output channels that can be simultaneously activated or inhibited in combinati...

متن کامل

Regulation of Brown Adipose Tissue Activity by Interoceptive CNS Pathways: The interaction between Brain and Periphery

To maintain thermal homeostasis, specific thermogenic tissues are under the control of central thermoregulatory networks that regulate the body's response to thermal challenges. One of these mechanisms involves non-shivering thermogenesis in brown adipose tissue (BAT), which is activated in cold environments in order to defend the body against physical damage as a result of hypothermia. The obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 2006